Python模块之psutil

[TOC]

用Python来编写脚本简化日常的运维工作是Python的一个重要用途。在Linux下,有许多系统命令可以让我们时刻监控系统运行的状态,如pstopfree等等。要获取这些系统信息,Python可以通过subprocess模块调用并获取结果。但这样做显得很麻烦,尤其是要写很多解析代码。

在Python中获取系统信息的另一个好办法是使用psutil这个第三方模块。顾名思义,psutil = process and system utilities,它不仅可以通过一两行代码实现系统监控,还可以跨平台使用,支持Linux/UNIX/OSX/Windows等,是系统管理员和运维小伙伴不可或缺的必备模块。

安装psutil

如果安装了Anaconda,psutil就已经可用了。否则,需要在命令行下通过pip安装:

1
$ pip install psutil

获取CPU信息

我们先来获取CPU的信息:

1
2
3
4
5
6
7
>>> import psutil
>>> psutil.cpu_count() # CPU逻辑数量
4
>>> psutil.cpu_count(logical=False) # CPU物理核心
2
# 2说明是双核超线程, 4则是4核非超线程

统计CPU的用户/系统/空闲时间:

1
2
>>> psutil.cpu_times()
scputimes(user=10963.31, nice=0.0, system=5138.67, idle=356102.45)

再实现类似top命令的CPU使用率,每秒刷新一次,累计10次:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> for x in range(10):
... psutil.cpu_percent(interval=1, percpu=True)
...
[14.0, 4.0, 4.0, 4.0]
[12.0, 3.0, 4.0, 3.0]
[8.0, 4.0, 3.0, 4.0]
[12.0, 3.0, 3.0, 3.0]
[18.8, 5.1, 5.9, 5.0]
[10.9, 5.0, 4.0, 3.0]
[12.0, 5.0, 4.0, 5.0]
[15.0, 5.0, 4.0, 4.0]
[19.0, 5.0, 5.0, 4.0]
[9.0, 3.0, 2.0, 3.0]

获取内存信息

使用psutil获取物理内存和交换内存信息,分别使用:

1
2
3
4
>>> psutil.virtual_memory()
svmem(total=8589934592, available=2866520064, percent=66.6, used=7201386496, free=216178688, active=3342192640, inactive=2650341376, wired=1208852480)
>>> psutil.swap_memory()
sswap(total=1073741824, used=150732800, free=923009024, percent=14.0, sin=10705981440, sout=40353792)

返回的是字节为单位的整数,可以看到,总内存大小是8589934592 = 8 GB,已用7201386496 = 6.7 GB,使用了66.6%。

而交换区大小是1073741824 = 1 GB。

获取磁盘信息

可以通过psutil获取磁盘分区、磁盘使用率和磁盘IO信息:

1
2
3
4
5
6
>>> psutil.disk_partitions() # 磁盘分区信息
[sdiskpart(device='/dev/disk1', mountpoint='/', fstype='hfs', opts='rw,local,rootfs,dovolfs,journaled,multilabel')]
>>> psutil.disk_usage('/') # 磁盘使用情况
sdiskusage(total=998982549504, used=390880133120, free=607840272384, percent=39.1)
>>> psutil.disk_io_counters() # 磁盘IO
sdiskio(read_count=988513, write_count=274457, read_bytes=14856830464, write_bytes=17509420032, read_time=2228966, write_time=1618405)

可以看到,磁盘'/'的总容量是998982549504 = 930 GB,使用了39.1%。文件格式是HFS,opts中包含rw表示可读写,journaled表示支持日志。

获取网络信息

psutil可以获取网络接口和网络连接信息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> psutil.net_io_counters() # 获取网络读写字节/包的个数
snetio(bytes_sent=3885744870, bytes_recv=10357676702, packets_sent=10613069, packets_recv=10423357, errin=0, errout=0, dropin=0, dropout=0)
>>> psutil.net_if_addrs() # 获取网络接口信息
{
'lo0': [snic(family=<AddressFamily.AF_INET: 2>, address='127.0.0.1', netmask='255.0.0.0'), ...],
'en1': [snic(family=<AddressFamily.AF_INET: 2>, address='10.0.1.80', netmask='255.255.255.0'), ...],
'en0': [...],
'en2': [...],
'bridge0': [...]
}
>>> psutil.net_if_stats() # 获取网络接口状态
{
'lo0': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_UNKNOWN: 0>, speed=0, mtu=16384),
'en0': snicstats(isup=True, duplex=<NicDuplex.NIC_DUPLEX_UNKNOWN: 0>, speed=0, mtu=1500),
'en1': snicstats(...),
'en2': snicstats(...),
'bridge0': snicstats(...)
}

要获取当前网络连接信息,使用net_connections()

1
2
3
4
5
6
7
8
9
10
11
>>> psutil.net_connections()
Traceback (most recent call last):
...
PermissionError: [Errno 1] Operation not permitted

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
...
psutil.AccessDenied: psutil.AccessDenied (pid=3847)

你可能会得到一个AccessDenied错误,原因是psutil获取信息也是要走系统接口,而获取网络连接信息需要root权限,这种情况下,可以退出Python交互环境,用sudo重新启动:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
$ sudo python3
Password: ******
Python 3.6.3 ... on darwin
Type "help", ... for more information.
>>> import psutil
>>> psutil.net_connections()
[
sconn(fd=83, family=<AddressFamily.AF_INET6: 30>, type=1, laddr=addr(ip='::127.0.0.1', port=62911), raddr=addr(ip='::127.0.0.1', port=3306), status='ESTABLISHED', pid=3725),
sconn(fd=84, family=<AddressFamily.AF_INET6: 30>, type=1, laddr=addr(ip='::127.0.0.1', port=62905), raddr=addr(ip='::127.0.0.1', port=3306), status='ESTABLISHED', pid=3725),
sconn(fd=93, family=<AddressFamily.AF_INET6: 30>, type=1, laddr=addr(ip='::', port=8080), raddr=(), status='LISTEN', pid=3725),
sconn(fd=103, family=<AddressFamily.AF_INET6: 30>, type=1, laddr=addr(ip='::127.0.0.1', port=62918), raddr=addr(ip='::127.0.0.1', port=3306), status='ESTABLISHED', pid=3725),
sconn(fd=105, family=<AddressFamily.AF_INET6: 30>, type=1, ..., pid=3725),
sconn(fd=106, family=<AddressFamily.AF_INET6: 30>, type=1, ..., pid=3725),
sconn(fd=107, family=<AddressFamily.AF_INET6: 30>, type=1, ..., pid=3725),
...
sconn(fd=27, family=<AddressFamily.AF_INET: 2>, type=2, ..., pid=1)
]

获取进程信息

通过psutil可以获取到所有进程的详细信息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
>>> psutil.pids() # 所有进程ID
[3865, 3864, 3863, 3856, 3855, 3853, 3776, ..., 45, 44, 1, 0]
>>> p = psutil.Process(3776) # 获取指定进程ID=3776,其实就是当前Python交互环境
>>> p.name() # 进程名称
'python3.6'
>>> p.exe() # 进程exe路径
'/Users/michael/anaconda3/bin/python3.6'
>>> p.cwd() # 进程工作目录
'/Users/michael'
>>> p.cmdline() # 进程启动的命令行
['python3']
>>> p.ppid() # 父进程ID
3765
>>> p.parent() # 父进程
<psutil.Process(pid=3765, name='bash') at 4503144040>
>>> p.children() # 子进程列表
[]
>>> p.status() # 进程状态
'running'
>>> p.username() # 进程用户名
'michael'
>>> p.create_time() # 进程创建时间
1511052731.120333
>>> p.terminal() # 进程终端
'/dev/ttys002'
>>> p.cpu_times() # 进程使用的CPU时间
pcputimes(user=0.081150144, system=0.053269812, children_user=0.0, children_system=0.0)
>>> p.memory_info() # 进程使用的内存
pmem(rss=8310784, vms=2481725440, pfaults=3207, pageins=18)
>>> p.open_files() # 进程打开的文件
[]
>>> p.connections() # 进程相关网络连接
[]
>>> p.num_threads() # 进程的线程数量
1
>>> p.threads() # 所有线程信息
[pthread(id=1, user_time=0.090318, system_time=0.062736)]
>>> p.environ() # 进程环境变量
{'SHELL': '/bin/bash', 'PATH': '/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:...', 'PWD': '/Users/michael', 'LANG': 'zh_CN.UTF-8', ...}
>>> p.terminate() # 结束进程
Terminated: 15 <-- 自己把自己结束了

和获取网络连接类似,获取一个root用户的进程需要root权限,启动Python交互环境或者.py文件时,需要sudo权限。

psutil还提供了一个test()函数,可以模拟出ps命令的效果:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
$ sudo python3
Password: ******
Python 3.6.3 ... on darwin
Type "help", ... for more information.
>>> import psutil
>>> psutil.test()
USER PID %MEM VSZ RSS TTY START TIME COMMAND
root 0 24.0 74270628 2016380 ? Nov18 40:51 kernel_task
root 1 0.1 2494140 9484 ? Nov18 01:39 launchd
root 44 0.4 2519872 36404 ? Nov18 02:02 UserEventAgent
root 45 ? 2474032 1516 ? Nov18 00:14 syslogd
root 47 0.1 2504768 8912 ? Nov18 00:03 kextd
root 48 0.1 2505544 4720 ? Nov18 00:19 fseventsd
_appleeven 52 0.1 2499748 5024 ? Nov18 00:00 appleeventsd
root 53 0.1 2500592 6132 ? Nov18 00:02 configd
...

小结

psutil使得Python程序获取系统信息变得易如反掌,只需要多用你就随心所欲了,嘿嘿。

psutil还可以获取用户信息、Windows服务等很多有用的系统信息,具体请参考psutil的官网:https://github.com/giampaolo/psutil

Python模块之chardet

[TOC]

字符串编码一直是令人非常头疼的问题,尤其是我们在处理一些不规范的第三方网页的时候。虽然Python提供了Unicode表示的strbytes两种数据类型,并且可以通过encode()decode()方法转换,但是,在不知道编码的情况下,对bytesdecode()不好做。

对于未知编码的bytes,要把它转换成str,需要先“猜测”编码。猜测的方式是先收集各种编码的特征字符,根据特征字符判断,就能有很大概率“猜对”。

当然,我们肯定不能从头自己写这个检测编码的功能,这样做费时费力。chardet这个第三方库正好就派上了用场。用它来检测编码,简单易用。

安装chardet

如果安装了Anaconda,chardet就已经可用了。否则,需要在命令行下通过pip安装:

1
$ pip install chardet

使用chardet

当我们拿到一个bytes时,就可以对其检测编码。用chardet检测编码,只需要一行代码:

1
2
>>> chardet.detect(b'Hello, world!')
{'encoding': 'ascii', 'confidence': 1.0, 'language': ''}

检测出的编码是ascii,注意到还有个confidence字段,表示检测的概率是1.0(即100%)。

我们来试试检测GBK编码的中文:

1
2
3
4
>>> data = '离离原上草,一岁一枯荣'.encode('gbk')
>>> chardet.detect(data)
{'encoding': 'GB2312', 'confidence': 0.7407407407407407, 'language': 'Chinese'}

检测的编码是GB2312,注意到GBK是GB2312的超集,两者是同一种编码,检测正确的概率是74%,language字段指出的语言是'Chinese'

对UTF-8编码进行检测:

1
2
3
4
>>> data = '离离原上草,一岁一枯荣'.encode('utf-8')
>>> chardet.detect(data)
{'encoding': 'utf-8', 'confidence': 0.99, 'language': ''}

我们再试试对日文进行检测:

1
2
3
4
>>> data = '最新の主要ニュース'.encode('euc-jp')
>>> chardet.detect(data)
{'encoding': 'EUC-JP', 'confidence': 0.99, 'language': 'Japanese'}

可见,用chardet检测编码,使用简单。获取到编码后,再转换为str,就可以方便后续处理。

chardet支持检测的编码列表请参考官方文档Supported encodings

小结

使用chardet检测编码非常容易,chardet支持检测中文、日文、韩文等多种语言。

Python模块之requests

[TOC]

Python内置的模块有urllib,用于访问网络资源。但是,它用起来比较麻烦,而且,缺少很多实用的高级功能。

更好的方案是使用requests。它是一个Python第三方库,处理URL资源特别方便。

安装requests

如果安装了Anaconda,requests就已经可用了。否则,需要在命令行下通过pip安装:

1
$ pip install requests

使用requests

要通过GET访问一个页面,只需要几行代码:

1
2
3
4
5
6
7
8
>>> import requests
>>> r = requests.get('https://www.douban.com/') # 豆瓣首页
>>> r.status_code
200
>>> r.text
r.text
'<!DOCTYPE HTML>\n<html>\n<head>\n<meta name="description" content="提供图书、电影、音乐唱片的推荐、评论和...'

对于带参数的URL,传入一个dict作为params参数:

1
2
3
4
>>> r = requests.get('https://www.douban.com/search', params={'q': 'python', 'cat': '1001'})
>>> r.url # 实际请求的URL
'https://www.douban.com/search?q=python&cat=1001'

requests自动检测编码,可以使用encoding属性查看:

1
2
3
>>> r.encoding
'utf-8'

无论响应是文本还是二进制内容,我们都可以用content属性获得bytes对象:

1
2
3
>>> r.content
b'<!DOCTYPE html>\n<html>\n<head>\n<meta http-equiv="Content-Type" content="text/html; charset=utf-8">\n...'

requests的方便之处还在于,对于特定类型的响应,例如JSON,可以直接获取:

1
2
3
4
>>> r = requests.get('https://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20weather.forecast%20where%20woeid%20%3D%202151330&format=json')
>>> r.json()
{'query': {'count': 1, 'created': '2017-11-17T07:14:12Z', ...

需要传入HTTP Header时,我们传入一个dict作为headers参数:

1
2
3
>>> r = requests.get('https://www.douban.com/', headers={'User-Agent': 'Mozilla/5.0 (iPhone; CPU iPhone OS 11_0 like Mac OS X) AppleWebKit'})
>>> r.text
'<!DOCTYPE html>\n<html>\n<head>\n<meta charset="UTF-8">\n <title>豆瓣(手机版)</title>...'

要发送POST请求,只需要把get()方法变成post(),然后传入data参数作为POST请求的数据:

1
>>> r = requests.post('https://accounts.douban.com/login', data={'form_email': 'abc@example.com', 'form_password': '123456'})

requests默认使用application/x-www-form-urlencoded对POST数据编码。如果要传递JSON数据,可以直接传入json参数:

1
2
params = {'key': 'value'}
r = requests.post(url, json=params) # 内部自动序列化为JSON

类似的,上传文件需要更复杂的编码格式,但是requests把它简化成files参数:

1
2
>>> upload_files = {'file': open('report.xls', 'rb')}
>>> r = requests.post(url, files=upload_files)

在读取文件时,注意务必使用'rb'即二进制模式读取,这样获取的bytes长度才是文件的长度。

对于post请求,一般data参数用来验证权限,files表示要post的文件,所以对于需要权限才能上传的requests如下:

1
2
3
4
5
post_url = post_json['url']
post_fileds = post_json['fields']
files = {'file': open('/home/superman/Pictures/test1.jpg', 'rb')}
r = requests.post(url=post_url, data=post_fileds, files=files)
print("post status_code : ", r.status_code)

post()方法替换为put()delete()等,就可以以PUT或DELETE方式请求资源。

除了能轻松获取响应内容外,requests对获取HTTP响应的其他信息也非常简单。例如,获取响应头:

1
2
3
4
>>> r.headers
{Content-Type': 'text/html; charset=utf-8', 'Transfer-Encoding': 'chunked', 'Content-Encoding': 'gzip', ...}
>>> r.headers['Content-Type']
'text/html; charset=utf-8'

requests对Cookie做了特殊处理,使得我们不必解析Cookie就可以轻松获取指定的Cookie:

1
2
>>> r.cookies['ts']
'example_cookie_12345'

要在请求中传入Cookie,只需准备一个dict传入cookies参数:

1
2
>>> cs = {'token': '12345', 'status': 'working')
>>> r = requests.get(url, cookies=cs)

最后,要指定超时,传入以秒为单位的timeout参数:

1
2
>>> r = requests.get(url, timeout=2.5) # 2.5秒后超时

小结

用requests获取URL资源,就是这么简单

Python模块之pillow

[TOC]

除了内建的模块外,Python还有大量的第三方模块,而且是相当相当的多。

基本上,所有的第三方模块都会在PyPI - the Python Package Index上注册,只要找到对应的模块名字,即可用pip安装。也可以安装Anaconda,安装后,数十个常用的第三方模块就已经就绪,不用pip手动安装。下面讲解一下pillow这个第三方模块.

PIL:Python Imaging Library,已经是Python平台事实上的图像处理标准库了。PIL功能非常强大,但API却非常简单易用。

由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow。

安装Pillow

如果安装了Anaconda,Pillow就已经可用了。否则,需要在命令行下通过pip安装:

1
$ pip install pillow

操作图像

来看看最常见的图像缩放操作,只需三四行代码:

1
2
3
4
5
6
7
8
9
10
11
12
from PIL import Image

# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('test.jpg')
# 获得图像尺寸:
w, h = im.size
print('Original image size: %sx%s' % (w, h))
# 缩放到50%:
im.thumbnail((w//2, h//2))
print('Resize image to: %sx%s' % (w//2, h//2))
# 把缩放后的图像用jpeg格式保存:
im.save('thumbnail.jpg', 'jpeg')

其他功能如切片、旋转、滤镜、输出文字、调色板等一应俱全。

比如,模糊效果也只需几行代码:

1
2
3
4
5
6
7
from PIL import Image, ImageFilter

# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('test.jpg')
# 应用模糊滤镜:
im2 = im.filter(ImageFilter.BLUR)
im2.save('blur.jpg', 'jpeg')

效果如下:

![PIL-blur](62 Python模块只pillow/dim.jpg)

PIL的ImageDraw提供了一系列绘图方法,让我们可以直接绘图。比如要生成字母验证码图片:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from PIL import Image, ImageDraw, ImageFont, ImageFilter

import random

# 随机字母:
def rndChar():
return chr(random.randint(65, 90))

# 随机颜色1:
def rndColor():
return (random.randint(64, 255), random.randint(64, 255), random.randint(64, 255))

# 随机颜色2:
def rndColor2():
return (random.randint(32, 127), random.randint(32, 127), random.randint(32, 127))

# 240 x 60:
width = 60 * 4
height = 60
image = Image.new('RGB', (width, height), (255, 255, 255))
# 创建Font对象:
# Windows中
font = ImageFont.truetype(r"C:\Windows\Fonts\Arial.ttf", 36)
# Linux系统中
font = ImageFont.truetype(r"/usr/share/fonts/dejavu/DejaVuSans-Bold.ttf", 36)

# 创建Draw对象:
draw = ImageDraw.Draw(image)
# 填充每个像素:
for x in range(width):
for y in range(height):
draw.point((x, y), fill=rndColor())
# 输出文字:
for t in range(4):
draw.text((60 * t + 10, 10), rndChar(), font=font, fill=rndColor2())
# 模糊:
image = image.filter(ImageFilter.BLUR)
image.save('code.jpg', 'jpeg')

# 上面font 设置了字体的大小36,为了让字母显示在中间,所以在draw.text中增加了偏移量(10,10)

我们用随机颜色填充背景,再画上文字,最后对图像进行模糊,得到验证码图片如下:

![verify](62 Python模块只pillow/verify.jpg)

如果运行的时候报错:

1
IOError: cannot open resource

这是因为PIL无法定位到字体文件的位置,可以根据操作系统提供绝对路径,比如:

1
2
'/Library/Fonts/Arial.ttf'

要详细了解PIL的强大功能,请请参考Pillow官方文档:

https://pillow.readthedocs.org/

小结

PIL提供了操作图像的强大功能,可以通过简单的代码完成复杂的图像处理。

Python内建模块HTMLParser

[TOC]

如果我们要编写一个搜索引擎,第一步是用爬虫把目标网站的页面抓下来,第二步就是解析该HTML页面,看看里面的内容到底是新闻、图片还是视频。

假设第一步已经完成了,第二步应该如何解析HTML呢?

HTML本质上是XML的子集,但是HTML的语法没有XML那么严格,所以不能用标准的DOM或SAX来解析HTML。

好在Python提供了HTMLParser来非常方便地解析HTML,只需简单几行代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from html.parser import HTMLParser
from html.entities import name2codepoint

class MyHTMLParser(HTMLParser):

def handle_starttag(self, tag, attrs):
print('<%s>' % tag)

def handle_endtag(self, tag):
print('</%s>' % tag)

def handle_startendtag(self, tag, attrs):
print('<%s/>' % tag)

def handle_data(self, data):
print(data)

def handle_comment(self, data):
print('<!--', data, '-->')

def handle_entityref(self, name):
print('&%s;' % name)

def handle_charref(self, name):
print('&#%s;' % name)

parser = MyHTMLParser()
parser.feed('''<html>
<head></head>
<body>
<!-- test html parser -->
<p>Some <a href=\"#\">html</a> HTML&nbsp;tutorial...<br>END</p>
</body></html>''')

feed()方法可以多次调用,也就是不一定一次把整个HTML字符串都塞进去,可以一部分一部分塞进去。

特殊字符有两种,一种是英文表示的&nbsp;,一种是数字表示的&#1234;,这两种字符都可以通过Parser解析出来。

小结

利用HTMLParser,可以把网页中的文本、图像等解析出来。

try it ?

找一个网页,例如https://www.python.org/events/python-events/,用浏览器查看源码并复制,然后尝试解析一下HTML,输出Python官网发布的会议时间、名称和地点。

1
2
3
4
5
6
7
8
9
10
from pyquery import PyQuery as pq
doc = pq(url='https://www.python.org/events/python-events/')

title = list(doc('.event-title').items())
time = list(doc('time').items())
location = list(doc('.event-location').items())

i = 0
for i in range(len(title)):
print('会议: %s,\n会议时间:%s,\t会议地点:%s\n' % (title[i].text(), time[i].text(), location[i].text()))

Python内建模块xml

[TOC]

XML虽然比JSON复杂,在Web中应用也不如以前多了,不过仍有很多地方在用,所以,有必要了解如何操作XML。

DOM vs SAX

操作XML有两种方法:DOM和SAX。DOM会把整个XML读入内存,解析为树,因此占用内存大,解析慢,优点是可以任意遍历树的节点。SAX是流模式,边读边解析,占用内存小,解析快,缺点是我们需要自己处理事件。

正常情况下,优先考虑SAX,因为DOM实在太占内存。

在Python中使用SAX解析XML非常简洁,通常我们关心的事件是start_elementend_elementchar_data,准备好这3个函数,然后就可以解析xml了。

举个例子,当SAX解析器读到一个节点时:

1
<a href="/">python</a>

会产生3个事件:

  1. start_element事件,在读取<a href="/">时;
  2. char_data事件,在读取python时;
  3. end_element事件,在读取</a>时。

用代码实验一下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from xml.parsers.expat import ParserCreate

class DefaultSaxHandler(object):
def start_element(self, name, attrs):
print('sax:start_element: %s, attrs: %s' % (name, str(attrs)))

def end_element(self, name):
print('sax:end_element: %s' % name)

def char_data(self, text):
print('sax:char_data: %s' % text)

xml = r'''<?xml version="1.0"?>
<ol>
<li><a href="/python">Python</a></li>
<li><a href="/ruby">Ruby</a></li>
</ol>
'''

handler = DefaultSaxHandler()
parser = ParserCreate()
parser.StartElementHandler = handler.start_element
parser.EndElementHandler = handler.end_element
parser.CharacterDataHandler = handler.char_data
parser.Parse(xml)

需要注意的是读取一大段字符串时,CharacterDataHandler可能被多次调用,所以需要自己保存起来,在EndElementHandler里面再合并。

除了解析XML外,如何生成XML呢?99%的情况下需要生成的XML结构都是非常简单的,因此,最简单也是最有效的生成XML的方法是拼接字符串:

1
2
3
4
5
6
L = []
L.append(r'<?xml version="1.0"?>')
L.append(r'<root>')
L.append(encode('some & data'))
L.append(r'</root>')
return ''.join(L)

如果要生成复杂的XML呢?建议你不要用XML,改成JSON。

小结

解析XML时,注意找出自己感兴趣的节点,响应事件时,把节点数据保存起来。解析完毕后,就可以处理数据。

练习

请利用SAX编写程序解析Yahoo的XML格式的天气预报,获取天气预报:

https://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20weather.forecast%20where%20woeid%20%3D%202151330&format=xml

参数woeid是城市代码,要查询某个城市代码,可以在weather.yahoo.com搜索城市,浏览器地址栏的URL就包含城市代码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# -*- coding:utf-8 -*-

from xml.parsers.expat import ParserCreate
from urllib import request
def parseXml(xml_str):
print(xml_str)
return {
'city': '?',
'forecast': [
{
'date': '2017-11-17',
'high': 43,
'low' : 26
},
{
'date': '2017-11-18',
'high': 41,
'low' : 20
},
{
'date': '2017-11-19',
'high': 43,
'low' : 19
}
]
}

测试:

1
2
3
4
5
6
7
URL = 'https://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20weather.forecast%20where%20woeid%20%3D%202151330&format=xml'

with request.urlopen(URL, timeout=4) as f:
data = f.read()

result = parseXml(data.decode('utf-8'))
assert result['city'] == 'Beijing'

Python内建模块contextlib

[TOC]

在Python中,读写文件这样的资源要特别注意,必须在使用完毕后正确关闭它们。正确关闭文件资源的一个方法是使用try...finally

1
2
3
4
5
6
try:
f = open('/path/to/file', 'r')
f.read()
finally:
if f:
f.close()

try...finally非常繁琐。Python的with语句允许我们非常方便地使用资源,而不必担心资源没有关闭,所以上面的代码可以简化为:

1
2
3
with open('/path/to/file', 'r') as f:
f.read()

并不是只有open()函数返回的fp对象才能使用with语句。实际上,任何对象,只要正确实现了上下文管理,就可以用于with语句。

实现上下文管理是通过__enter____exit__这两个方法实现的。例如,下面的class实现了这两个方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Query(object):

def __init__(self, name):
self.name = name

def __enter__(self):
print('Begin')
return self

def __exit__(self, exc_type, exc_value, traceback):
if exc_type:
print('Error')
else:
print('End')

def query(self):
print('Query info about %s...' % self.name)

这样我们就可以把自己写的资源对象用于with语句:

1
2
with Query('Bob') as q:
q.query()

@contextmanager

编写__enter____exit__仍然很繁琐,因此Python的标准库contextlib提供了更简单的写法,上面的代码可以改写如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from contextlib import contextmanager

class Query(object):

def __init__(self, name):
self.name = name

def query(self):
print('Query info about %s...' % self.name)

@contextmanager
def create_query(name):
print('Begin')
q = Query(name)
yield q
print('End')

@contextmanager这个decorator接受一个generator,用yield语句把with ... as var把变量输出出去,然后,with语句就可以正常地工作了:

1
2
3
with create_query('Bob') as q:
q.query()

很多时候,我们希望在某段代码执行前后自动执行特定代码,也可以用@contextmanager实现。例如:

1
2
3
4
5
6
7
8
9
10
@contextmanager
def tag(name):
print("<%s>" % name)
yield
print("</%s>" % name)

with tag("h1"):
print("hello")
print("world")

上述代码执行结果为:

1
2
3
4
5
<h1>
hello
world
</h1>

代码的执行顺序是:

  1. with语句首先执行yield之前的语句,因此打印出<h1>
  2. yield调用会执行with语句内部的所有语句,因此打印出helloworld
  3. 最后执行yield之后的语句,打印出</h1>

因此,@contextmanager让我们通过编写generator来简化上下文管理。

@closing

如果一个对象没有实现上下文,我们就不能把它用于with语句。这个时候,可以用closing()来把该对象变为上下文对象。例如,用with语句使用urlopen()

1
2
3
4
5
6
from contextlib import closing
from urllib.request import urlopen

with closing(urlopen('https://www.python.org')) as page:
for line in page:
print(line)

closing也是一个经过@contextmanager装饰的generator,这个generator编写起来其实非常简单:

1
2
3
4
5
6
7
@contextmanager
def closing(thing):
try:
yield thing
finally:
thing.close()

它的作用就是把任意对象变为上下文对象,并支持with语句。

@contextlib还有一些其他decorator,便于我们编写更简洁的代码。

Python内建模块urllib

[TOC]

urllib提供了一系列用于操作URL的功能。

Get

urllib的request模块可以非常方便地抓取URL内容,也就是发送一个GET请求到指定的页面,然后返回HTTP的响应:

例如,对豆瓣的一个URLhttps://api.douban.com/v2/book/2129650进行抓取,并返回响应:

1
2
3
4
5
6
7
8
from urllib import request

with request.urlopen('https://api.douban.com/v2/book/2129650') as f:
data = f.read()
print('Status:', f.status, f.reason)
for k, v in f.getheaders():
print('%s: %s' % (k, v))
print('Data:', data.decode('utf-8'))

可以看到HTTP响应的头和JSON数据:

1
2
3
4
5
6
7
8
9
10
11
Status: 200 OK
Server: nginx
Date: Tue, 26 May 2015 10:02:27 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 2049
Connection: close
Expires: Sun, 1 Jan 2006 01:00:00 GMT
Pragma: no-cache
Cache-Control: must-revalidate, no-cache, private
X-DAE-Node: pidl1
Data: {"rating":{"max":10,"numRaters":16,"average":"7.4","min":0},"subtitle":"","author":["廖雪峰编著"],"pubdate":"2007-6",...}

如果我们要想模拟浏览器发送GET请求,就需要使用Request对象,通过往Request对象添加HTTP头,我们就可以把请求伪装成浏览器。例如,模拟iPhone 6去请求豆瓣首页:

1
2
3
4
5
6
7
8
9
from urllib import request

req = request.Request('http://www.douban.com/')
req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25')
with request.urlopen(req) as f:
print('Status:', f.status, f.reason)
for k, v in f.getheaders():
print('%s: %s' % (k, v))
print('Data:', f.read().decode('utf-8'))

这样豆瓣会返回适合iPhone的移动版网页:

1
2
3
4
5
6
...
<meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1.0, minimum-scale=1.0, maximum-scale=1.0">
<meta name="format-detection" content="telephone=no">
<link rel="apple-touch-icon" sizes="57x57" href="http://img4.douban.com/pics/cardkit/launcher/57.png" />
...

Post

如果要以POST发送一个请求,只需要把参数data以bytes形式传入。

我们模拟一个微博登录,先读取登录的邮箱和口令,然后按照weibo.cn的登录页的格式以username=xxx&password=xxx的编码传入:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from urllib import request, parse

print('Login to weibo.cn...')
email = input('Email: ')
passwd = input('Password: ')
login_data = parse.urlencode([
('username', email),
('password', passwd),
('entry', 'mweibo'),
('client_id', ''),
('savestate', '1'),
('ec', ''),
('pagerefer', 'https://passport.weibo.cn/signin/welcome?entry=mweibo&r=http%3A%2F%2Fm.weibo.cn%2F')
])

req = request.Request('https://passport.weibo.cn/sso/login')
req.add_header('Origin', 'https://passport.weibo.cn')
req.add_header('User-Agent', 'Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25')
req.add_header('Referer', 'https://passport.weibo.cn/signin/login?entry=mweibo&res=wel&wm=3349&r=http%3A%2F%2Fm.weibo.cn%2F')

with request.urlopen(req, data=login_data.encode('utf-8')) as f:
print('Status:', f.status, f.reason)
for k, v in f.getheaders():
print('%s: %s' % (k, v))
print('Data:', f.read().decode('utf-8'))

如果登录成功,我们获得的响应如下:

1
2
3
4
5
6
7
Status: 200 OK
Server: nginx/1.2.0
...
Set-Cookie: SSOLoginState=1432620126; path=/; domain=weibo.cn
...
Data: {"retcode":20000000,"msg":"","data":{...,"uid":"1658384301"}}

如果登录失败,我们获得的响应如下:

1
2
3
...
Data: {"retcode":50011015,"msg":"\u7528\u6237\u540d\u6216\u5bc6\u7801\u9519\u8bef","data":{"username":"example@python.org","errline":536}}

Handler

如果还需要更复杂的控制,比如通过一个Proxy去访问网站,我们需要利用ProxyHandler来处理,示例代码如下:

1
2
3
4
5
6
proxy_handler = urllib.request.ProxyHandler({'http': 'http://www.example.com:3128/'})
proxy_auth_handler = urllib.request.ProxyBasicAuthHandler()
proxy_auth_handler.add_password('realm', 'host', 'username', 'password')
opener = urllib.request.build_opener(proxy_handler, proxy_auth_handler)
with opener.open('http://www.example.com/login.html') as f:
pass

小结

urllib提供的功能就是利用程序去执行各种HTTP请求。如果要模拟浏览器完成特定功能,需要把请求伪装成浏览器。伪装的方法是先监控浏览器发出的请求,再根据浏览器的请求头来伪装,User-Agent头就是用来标识浏览器的。

练习

利用urllib读取JSON,然后将JSON解析为Python对象:

1
2
3
4
5
# -*- coding: utf-8 -*-
from urllib import request
def fetch_data(url):
return ''

测试:

1
2
3
4
5
URL = 'https://query.yahooapis.com/v1/public/yql?q=select%20*%20from%20weather.forecast%20where%20woeid%20%3D%202151330&format=json'
data = fetch_data(URL)
print(data)
assert data['query']['results']['channel']['location']['city'] == 'Beijing'
print('ok')

answer:

1
2
3
4
5
6
# -*- coding: utf-8 -*-
from urllib import request
import json
def fetch_data(url):
with request.urlopen(url) as f :
return json.loads(f.read().decode('utf-8'))

Python内建模块itertools

[TOC]

Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数。

首先,我们看看itertools提供的几个“无限”迭代器:

1
2
3
4
5
6
7
8
9
>>> import itertools
>>> natuals = itertools.count(1)
>>> for n in natuals:
... print(n)
...
1
2
3
...

因为count()会创建一个无限的迭代器,所以上述代码会打印出自然数序列,根本停不下来,只能按Ctrl+C退出。

cycle()会把传入的一个序列无限重复下去:

1
2
3
4
5
6
7
8
9
10
11
12
>>> import itertools
>>> cs = itertools.cycle('ABC') # 注意字符串也是序列的一种
>>> for c in cs:
... print(c)
...
'A'
'B'
'C'
'A'
'B'
'C'
...

同样停不下来。

repeat()负责把一个元素无限重复下去,不过如果提供第二个参数就可以限定重复次数:

1
2
3
4
5
6
7
>>> ns = itertools.repeat('A', 3)
>>> for n in ns:
... print(n)
...
A
A
A

无限序列只有在for迭代时才会无限地迭代下去,如果只是创建了一个迭代对象,它不会事先把无限个元素生成出来,事实上也不可能在内存中创建无限多个元素。

无限序列虽然可以无限迭代下去,但是通常我们会通过takewhile()等函数根据条件判断来截取出一个有限的序列:

1
2
3
4
>>> natuals = itertools.count(1)
>>> ns = itertools.takewhile(lambda x: x <= 10, natuals)
>>> list(ns)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

itertools提供的几个迭代器操作函数更加有用:

chain()

chain()可以把一组迭代对象串联起来,形成一个更大的迭代器:

1
2
3
>>> for c in itertools.chain('ABC', 'XYZ'):
... print(c)
# 迭代效果:'A' 'B' 'C' 'X' 'Y' 'Z'

groupby()

groupby()把迭代器中相邻的重复元素挑出来放在一起:

1
2
3
4
5
6
7
>>> for key, group in itertools.groupby('AAABBBCCAAA'):
... print(key, list(group))
...
A ['A', 'A', 'A']
B ['B', 'B', 'B']
C ['C', 'C']
A ['A', 'A', 'A']

实际上挑选规则是通过函数完成的,只要作用于函数的两个元素返回的值相等,这两个元素就被认为是在一组的,而函数返回值作为组的key。如果我们要忽略大小写分组,就可以让元素'A''a'都返回相同的key:

1
2
3
4
5
6
7
>>> for key, group in itertools.groupby('AaaBBbcCAAa', lambda c: c.upper()):
... print(key, list(group))
...
A ['A', 'a', 'a']
B ['B', 'B', 'b']
C ['c', 'C']
A ['A', 'A', 'a']

try it ?

计算圆周率可以根据公式:

利用Python提供的itertools模块,我们来计算这个序列的前N项和:

1
2
3
4
5
6
7
8
9
10
11
12
13
# -*- coding: utf-8 -*-
import itertools
def pi(N):
' 计算pi的值 '
# step 1: 创建一个奇数序列: 1, 3, 5, 7, 9, ...

# step 2: 取该序列的前N项: 1, 3, 5, 7, 9, ..., 2*N-1.

# step 3: 添加正负符号并用4除: 4/1, -4/3, 4/5, -4/7, 4/9, ...

# step 4: 求和:
return 3.14

测试:

1
2
3
4
5
6
7
8
9
print(pi(10))
print(pi(100))
print(pi(1000))
print(pi(10000))
assert 3.04 < pi(10) < 3.05
assert 3.13 < pi(100) < 3.14
assert 3.140 < pi(1000) < 3.141
assert 3.1414 < pi(10000) < 3.1415
print('ok')

answer:

1
2
3
4
5
6
7
8
9
10
11
12
13
def pi(N):
natuals = itertools.count(1, 2)
ns = itertools.takewhile(lambda x: x <= 2*N-1, natuals)
list_ns = []
fu = -1
for i in ns :
fu = -fu
list_ns.append(4*fu/i)
# print(list_ns)
sum = 0
for i in list_ns :
sum = sum + i
return sum

小结

itertools模块提供的全部是处理迭代功能的函数,它们的返回值不是list,而是Iterator,只有用for循环迭代的时候才真正计算。

Python内建模块hashlib

[TOC]

摘要算法简介

Python的hashlib提供了常见的摘要算法,如MD5,SHA1等等。

什么是摘要算法呢?摘要算法又称哈希算法、散列算法。它通过一个函数,把任意长度的数据转换为一个长度固定的数据串(通常用16进制的字符串表示)。

举个例子,你写了一篇文章,内容是一个字符串'how to use python hashlib - by Michael',并附上这篇文章的摘要是'2d73d4f15c0db7f5ecb321b6a65e5d6d'。如果有人篡改了你的文章,并发表为'how to use python hashlib - by Bob',你可以一下子指出Bob篡改了你的文章,因为根据'how to use python hashlib - by Bob'计算出的摘要不同于原始文章的摘要。

可见,摘要算法就是通过摘要函数f()对任意长度的数据data计算出固定长度的摘要digest,目的是为了发现原始数据是否被人篡改过。

摘要算法之所以能指出数据是否被篡改过,就是因为摘要函数是一个单向函数,计算f(data)很容易,但通过digest反推data却非常困难。而且,对原始数据做一个bit的修改,都会导致计算出的摘要完全不同,这种现象称为雪崩效应。

我们以常见的摘要算法MD5为例,计算出一个字符串的MD5值:

1
2
3
4
5
import hashlib

md5 = hashlib.md5()
md5.update('how to use md5 in python hashlib?'.encode('utf-8'))
print(md5.hexdigest())

计算结果如下:

1
d26a53750bc40b38b65a520292f69306

如果数据量很大,可以分块多次调用update(),最后计算的结果是一样的:

1
2
3
4
5
6
import hashlib

md5 = hashlib.md5()
md5.update('how to use md5 in '.encode('utf-8'))
md5.update('python hashlib?'.encode('utf-8'))
print(md5.hexdigest())

试试改动一个字母,看看计算的结果是否完全不同。

MD5是最常见的摘要算法,速度很快,生成结果是固定的128 bit字节,通常用一个32位的16进制字符串表示。

另一种常见的摘要算法是SHA1,调用SHA1和调用MD5完全类似:

1
2
3
4
5
6
import hashlib

sha1 = hashlib.sha1()
sha1.update('how to use sha1 in '.encode('utf-8'))
sha1.update('python hashlib?'.encode('utf-8'))
print(sha1.hexdigest())

SHA1的结果是160 bit字节,通常用一个40位的16进制字符串表示。

比SHA1更安全的算法是SHA256和SHA512,不过越安全的算法不仅越慢,而且摘要长度更长。

有没有可能两个不同的数据通过某个摘要算法得到了相同的摘要?完全有可能,因为任何摘要算法都是把无限多的数据集合映射到一个有限的集合中。这种情况称为碰撞,比如Bob试图根据你的摘要反推出一篇文章'how to learn hashlib in python - by Bob',并且这篇文章的摘要恰好和你的文章完全一致,这种情况也并非不可能出现,但是非常非常困难,而且概率非常小。

摘要算法应用

摘要算法能应用到什么地方?举个常用例子:

任何允许用户登录的网站都会存储用户登录的用户名和口令。如何存储用户名和口令呢?方法是存到数据库表中:

name password
michael 123456
bob abc999
alice alice2008

如果以明文保存用户口令,如果数据库泄露,所有用户的口令就落入黑客的手里。此外,网站运维人员是可以访问数据库的,也就是能获取到所有用户的口令。

正确的保存口令的方式是不存储用户的明文口令,而是存储用户口令的摘要,比如MD5:

username password
michael e10adc3949ba59abbe56e057f20f883e
bob 878ef96e86145580c38c87f0410ad153
alice 99b1c2188db85afee403b1536010c2c9

当用户登录时,首先计算用户输入的明文口令的MD5,然后和数据库存储的MD5对比,如果一致,说明口令输入正确,如果不一致,口令肯定错误。

try it ?

根据用户输入的口令,计算出存储在数据库中的MD5口令:

1
2
def calc_md5(password):
md5 = hashlib.md5(password.encode('utf-8')).hexdigest()

存储MD5的好处是即使运维人员能访问数据库,也无法获知用户的明文口令。

设计一个验证用户登录的函数,根据用户输入的口令是否正确,返回True或False:

1
2
3
4
5
6
7
8
9
# -*- coding: utf-8 -*-
db = {
'michael': 'e10adc3949ba59abbe56e057f20f883e',
'bob': '878ef96e86145580c38c87f0410ad153',
'alice': '99b1c2188db85afee403b1536010c2c9'
}
def login(user, password):
pass

测试:

1
2
3
4
5
6
7
assert login('michael', '123456')
assert login('bob', 'abc999')
assert login('alice', 'alice2008')
assert not login('michael', '1234567')
assert not login('bob', '123456')
assert not login('alice', 'Alice2008')
print('ok')

answer:

1
2
3
4
5
6
7
8
def login(user, password):
md5 = hashlib.md5(password.encode('utf-8'))
# md5 = hashlib.md5()
# md5.update(password.encode('utf-8'))
if md5.hexdigest()== db[user]:
return True
else:
return False

采用MD5存储口令是否就一定安全呢?也不一定。假设你是一个黑客,已经拿到了存储MD5口令的数据库,如何通过MD5反推用户的明文口令呢?暴力破解费事费力,真正的黑客不会这么干。

考虑这么个情况,很多用户喜欢用123456888888password这些简单的口令,于是,黑客可以事先计算出这些常用口令的MD5值,得到一个反推表:

1
2
3
4
'e10adc3949ba59abbe56e057f20f883e': '123456'
'21218cca77804d2ba1922c33e0151105': '888888'
'5f4dcc3b5aa765d61d8327deb882cf99': 'password'

这样,无需破解,只需要对比数据库的MD5,黑客就获得了使用常用口令的用户账号。

对于用户来讲,当然不要使用过于简单的口令。但是,我们能否在程序设计上对简单口令加强保护呢?

由于常用口令的MD5值很容易被计算出来,所以,要确保存储的用户口令不是那些已经被计算出来的常用口令的MD5,这一方法通过对原始口令加一个复杂字符串来实现,俗称“加盐”:

1
2
def calc_md5(password):
return get_md5(password + 'the-Salt')

经过Salt处理的MD5口令,只要Salt不被黑客知道,即使用户输入简单口令,也很难通过MD5反推明文口令。

但是如果有两个用户都使用了相同的简单口令比如123456,在数据库中,将存储两条相同的MD5值,这说明这两个用户的口令是一样的。有没有办法让使用相同口令的用户存储不同的MD5呢?

如果假定用户无法修改登录名,就可以通过把登录名作为Salt的一部分来计算MD5,从而实现相同口令的用户也存储不同的MD5。

try it ?

根据用户输入的登录名和口令模拟用户注册,计算更安全的MD5:

1
2
3
4
db = {}

def register(username, password):
db[username] = get_md5(password + username + 'the-Salt')

然后,根据修改后的MD5算法实现用户登录的验证:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# -*- coding: utf-8 -*-
import hashlib, random

def get_md5(s):
return hashlib.md5(s.encode('utf-8')).hexdigest()

class User(object):
def __init__(self, username, password):
self.username = username
self.salt = ''.join([chr(random.randint(48, 122)) for i in range(20)])
self.password = get_md5(password + self.salt)
db = {
'michael': User('michael', '123456'),
'bob': User('bob', 'abc999'),
'alice': User('alice', 'alice2008')
}
def login(username, password):
user = db[username]
return user.password == get_md5(password)

测试:

1
2
3
4
5
6
7
assert login('michael', '123456')
assert login('bob', 'abc999')
assert login('alice', 'alice2008')
assert not login('michael', '1234567')
assert not login('bob', '123456')
assert not login('alice', 'Alice2008')
print('ok')

小结

摘要算法在很多地方都有广泛的应用。要注意摘要算法不是加密算法,不能用于加密(因为无法通过摘要反推明文),只能用于防篡改,但是它的单向计算特性决定了可以在不存储明文口令的情况下验证用户口令。