Python定制类

[TOC]

看到类似__slots__这种形如__xxx__的变量或者函数名就要注意,这些在Python中是有特殊用途的。

__slots__我们已经知道怎么用了,__len__()方法我们也知道是为了能让class作用于len()函数。

除此之外,Python的class中还有许多这样有特殊用途的函数,可以帮助我们定制类。

__str__, __repr__

我们先定义一个Student类,打印一个实例:

1
2
3
4
5
6
>>> class Student(object):
... def __init__(self, name):
... self.name = name
...
>>> print(Student('Michael'))
<__main__.Student object at 0x109afb190>

打印出一堆<__main__.Student object at 0x109afb190>,不好看。

怎么才能打印得好看呢?只需要定义好__str__()方法,返回一个好看的字符串就可以了:

1
2
3
4
5
6
7
8
>>> class Student(object):
... def __init__(self, name):
... self.name = name
... def __str__(self):
... return 'Student object (name: %s)' % self.name
...
>>> print(Student('Michael'))
Student object (name: Michael)

这样打印出来的实例,不但好看,而且容易看出实例内部重要的数据。

但是细心的朋友会发现直接敲变量不用print,打印出来的实例还是不好看:

1
2
3
>>> s = Student('Michael')
>>> s
<__main__.Student object at 0x109afb310>

这是因为直接显示变量调用的不是__str__(),而是__repr__(),两者的区别是__str__()返回用户看到的字符串,而__repr__()返回程序开发者看到的字符串,也就是说,__repr__()是为调试服务的。

解决办法是再定义一个__repr__()。但是通常__str__()__repr__()代码都是一样的,所以,有个偷懒的写法:

1
2
3
4
5
6
class Student(object):
def __init__(self, name):
self.name = name
def __str__(self):
return 'Student object (name=%s)' % self.name
__repr__ = __str__

__iter__, __next__

如果一个类想被用于for ... in循环,类似list或tuple那样,就必须实现一个__iter__()方法,该方法返回一个迭代对象,然后,Python的for循环就会不断调用该迭代对象的__next__()方法拿到循环的下一个值,直到遇到StopIteration错误时退出循环。

我们以斐波那契数列为例,写一个Fib类,可以作用于for循环:

1
2
3
4
5
6
7
8
9
10
11
12
class Fib(object):
def __init__(self):
self.a, self.b = 0, 1 # 初始化两个计数器a,b

def __iter__(self):
return self # 实例本身就是迭代对象,故返回自己

def __next__(self):
self.a, self.b = self.b, self.a + self.b # 计算下一个值
if self.a > 100000: # 退出循环的条件
raise StopIteration()
return self.a # 返回下一个值

现在,试试把Fib实例作用于for循环:

1
2
3
4
5
6
7
8
9
10
11
>>> for n in Fib():
... print(n)
...
1
1
2
3
5
...
46368
75025

__getitem__

Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素:

1
2
3
4
>>> Fib()[5]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'Fib' object does not support indexing

要表现得像list那样按照下标取出元素,需要实现__getitem__()方法:

1
2
3
4
5
6
class Fib(object):
def __getitem__(self, n):
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a

现在,就可以按下标访问数列的任意一项了:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> f = Fib()
>>> f[0]
1
>>> f[1]
1
>>> f[2]
2
>>> f[3]
3
>>> f[10]
89
>>> f[100]
573147844013817084101

但是list有个神奇的切片方法:

1
2
>>> list(range(100))[5:10]
[5, 6, 7, 8, 9]

对于Fib却报错。原因是__getitem__()传入的参数可能是一个int,也可能是一个切片对象slice,所以要做判断:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Fib(object):
def __getitem__(self, n):
if isinstance(n, int): # n是索引
a, b = 1, 1
for x in range(n):
a, b = b, a + b
return a
if isinstance(n, slice): # n是切片
start = n.start
stop = n.stop

a, b = 1, 1
L = []
for x in range(stop):
if x >= start:
L.append(a)
a, b = b, a + b
return L

现在试试Fib的切片:

1
2
3
4
5
>>> f = Fib()
>>> f[0:5]
[1, 1, 2, 3, 5]
>>> f[:10]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

但是没有对step参数作处理:

1
2
>>> f[:10:2]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

也没有对负数作处理,所以,要正确实现一个__getitem__()还是有很多工作要做的。

此外,如果把对象看成dict__getitem__()的参数也可能是一个可以作key的object,例如str

与之对应的是__setitem__()方法,把对象视作list或dict来对集合赋值。最后,还有一个__delitem__()方法,用于删除某个元素。

总之,通过上面的方法,我们自己定义的类表现得和Python自带的list、tuple、dict没什么区别,这完全归功于动态语言的“鸭子类型”,不需要强制继承某个接口。

__getattr__

正常情况下,当我们调用类的方法或属性时,如果不存在,就会报错。比如定义Student类:

1
2
3
4
class Student(object):

def __init__(self):
self.name = 'Michael'

调用name属性,没问题,但是,调用不存在的score属性,就有问题了:

1
2
3
4
5
6
7
>>> s = Student()
>>> print(s.name)
Michael
>>> print(s.score)
Traceback (most recent call last):
...
AttributeError: 'Student' object has no attribute 'score'

错误信息很清楚地告诉我们,没有找到score这个attribute。

要避免这个错误,除了可以加上一个score属性外,Python还有另一个机制,那就是写一个__getattr__()方法,动态返回一个属性。修改如下:

1
2
3
4
5
6
7
8
class Student(object):

def __init__(self):
self.name = 'Michael'

def __getattr__(self, attr):
if attr=='score':
return 99

当调用不存在的属性时,比如score,Python解释器会试图调用__getattr__(self, 'score')来尝试获得属性,这样,我们就有机会返回score的值:

1
2
3
4
5
>>> s = Student()
>>> s.name
'Michael'
>>> s.score
99

返回函数也是完全可以的:

1
2
3
4
5
class Student(object):

def __getattr__(self, attr):
if attr=='age':
return lambda: 25

只是调用方式要变为:

1
2
>>> s.age()
25

注意,只有在没有找到属性的情况下,才调用__getattr__,已有的属性,比如name,不会在__getattr__中查找。

此外,注意到任意调用如s.abc都会返回None,这是因为我们定义的__getattr__默认返回就是None。要让class只响应特定的几个属性,我们就要按照约定,抛出AttributeError的错误:

1
2
3
4
5
6
class Student(object):

def __getattr__(self, attr):
if attr=='age':
return lambda: 25
raise AttributeError('\'Student\' object has no attribute \'%s\'' % attr)

这实际上可以把一个类的所有属性和方法调用全部动态化处理了,不需要任何特殊手段。

这种完全动态调用的特性有什么实际作用呢?作用就是,可以针对完全动态的情况作调用。

举个例子:

现在很多网站都搞REST API,比如新浪微博、豆瓣啥的,调用API的URL类似:

如果要写SDK,给每个URL对应的API都写一个方法,那得累死,而且,API一旦改动,SDK也要改。

利用完全动态的__getattr__,我们可以写出一个链式调用:

1
2
3
4
5
6
7
8
9
10
11
12
class Chain(object):

def __init__(self, path=''):
self._path = path

def __getattr__(self, path):
return Chain('%s/%s' % (self._path, path))

def __str__(self):
return self._path

__repr__ = __str__

试试:

1
2
>>> Chain().status.user.timeline.list
'/status/user/timeline/list'

这样,无论API怎么变,SDK都可以根据URL实现完全动态的调用,而且,不随API的增加而改变!

还有些REST API会把参数放到URL中,比如GitHub的API:

1
GET /users/:user/repos

调用时,需要把:user替换为实际用户名。如果我们能写出这样的链式调用:

1
Chain().users('michael').repos

就可以非常方便地调用API了。有兴趣的童鞋可以试试写出来。

__call__

一个对象实例可以有自己的属性和方法,当我们调用实例方法时,我们用instance.method()来调用。能不能直接在实例本身上调用呢?在Python中,答案是肯定的。

任何类,只需要定义一个__call__()方法,就可以直接对实例进行调用。请看示例:

1
2
3
4
5
6
class Student(object):
def __init__(self, name):
self.name = name

def __call__(self):
print('My name is %s.' % self.name)

调用方式如下:

1
2
3
>>> s = Student('Michael')
>>> s() # self参数不要传入
My name is Michael.

__call__()还可以定义参数。对实例进行直接调用就好比对一个函数进行调用一样,所以你完全可以把对象看成函数,把函数看成对象,因为这两者之间本来就没啥根本的区别。

如果你把对象看成函数,那么函数本身其实也可以在运行期动态创建出来,因为类的实例都是运行期创建出来的,这么一来,我们就模糊了对象和函数的界限。

那么,怎么判断一个变量是对象还是函数呢?其实,更多的时候,我们需要判断一个对象是否能被调用,能被调用的对象就是一个Callable对象,比如函数和我们上面定义的带有__call__()的类实例:

1
2
3
4
5
6
7
8
9
10
>>> callable(Student())
True
>>> callable(max)
True
>>> callable([1, 2, 3])
False
>>> callable(None)
False
>>> callable('str')
False

通过callable()函数,我们就可以判断一个对象是否是“可调用”对象。

小结

Python的class允许定义许多定制方法,可以让我们非常方便地生成特定的类。

本节介绍的是最常用的几个定制方法,还有很多可定制的方法,请参考Python的官方文档。的设计。

Python多重继承

[TOC]

多重继承

一个子类同时获得多个父类的所有功能。

继承是面向对象编程的一个重要的方式,因为通过继承,子类就可以扩展父类的功能。

回忆一下Animal类层次的设计,假设我们要实现以下4种动物:

  • Dog - 狗狗;
  • Bat - 蝙蝠;
  • Parrot - 鹦鹉;
  • Ostrich - 鸵鸟。

如果按照哺乳动物和鸟类归类,我们可以设计出这样的类的层次:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
                ┌───────────────┐
│ Animal │
└───────────────┘

┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Mammal │ │ Bird │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Bat │ │ Parrot │ │ Ostrich │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

但是如果按照“能跑”和“能飞”来归类,我们就应该设计出这样的类的层次:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
                ┌───────────────┐
│ Animal │
└───────────────┘

┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Runnable │ │ Flyable │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Ostrich │ │ Parrot │ │ Bat │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

如果要把上面的两种分类都包含进来,我们就得设计更多的层次:

  • 哺乳类:能跑的哺乳类,能飞的哺乳类;
  • 鸟类:能跑的鸟类,能飞的鸟类。

这么一来,类的层次就复杂了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
                ┌───────────────┐
│ Animal │
└───────────────┘

┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Mammal │ │ Bird │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ MRun │ │ MFly │ │ BRun │ │ BFly │
└─────────┘ └─────────┘ └─────────┘ └─────────┘
│ │ │ │
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Bat │ │ Ostrich │ │ Parrot │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

如果要再增加“宠物类”和“非宠物类”,这么搞下去,类的数量会呈指数增长,很明显这样设计是不行的。

正确的做法是采用多重继承。首先,主要的类层次仍按照哺乳类和鸟类设计:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Animal(object):
pass

# 大类:
class Mammal(Animal):
pass

class Bird(Animal):
pass

# 各种动物:
class Dog(Mammal):
pass

class Bat(Mammal):
pass

class Parrot(Bird):
pass

class Ostrich(Bird):
pass

现在,我们要给动物再加上RunnableFlyable的功能,只需要先定义好RunnableFlyable的类:

1
2
3
4
5
6
7
8
class Runnable(object):
def run(self):
print('Running...')

class Flyable(object):
def fly(self):
print('Flying...')

对于需要Runnable功能的动物,就多继承一个Runnable,例如Dog

1
2
3
class Dog(Mammal, Runnable):
pass

对于需要Flyable功能的动物,就多继承一个Flyable,例如Bat

1
2
3
class Bat(Mammal, Flyable):
pass

通过多重继承,一个子类就可以同时获得多个父类的所有功能。

MixIn

在设计类的继承关系时,通常,主线都是单一继承下来的,例如,Ostrich继承自Bird。但是,如果需要“混入”额外的功能,通过多重继承就可以实现,比如,让Ostrich除了继承自Bird外,再同时继承Runnable。这种设计通常称之为MixIn。

为了更好地看出继承关系,我们把RunnableFlyable改为RunnableMixInFlyableMixIn。类似的,你还可以定义出肉食动物CarnivorousMixIn和植食动物HerbivoresMixIn,让某个动物同时拥有好几个MixIn:

1
2
3
class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
pass

MixIn的目的就是给一个类增加多个功能,这样,在设计类的时候,我们优先考虑通过多重继承来组合多个MixIn的功能,而不是设计多层次的复杂的继承关系。

Python自带的很多库也使用了MixIn。举个例子,Python自带了TCPServerUDPServer这两类网络服务,而要同时服务多个用户就必须使用多进程或多线程模型,这两种模型由ForkingMixInThreadingMixIn提供。通过组合,我们就可以创造出合适的服务来。

比如,编写一个多进程模式的TCP服务,定义如下:

1
2
3
class MyTCPServer(TCPServer, ForkingMixIn):
pass

编写一个多线程模式的UDP服务,定义如下:

1
2
3
class MyUDPServer(UDPServer, ThreadingMixIn):
pass

如果你打算搞一个更先进的协程模型,可以编写一个CoroutineMixIn

1
2
3
class MyTCPServer(TCPServer, CoroutineMixIn):
pass

这样一来,我们不需要复杂而庞大的继承链,只要选择组合不同的类的功能,就可以快速构造出所需的子类。

小结

由于Python允许使用多重继承,因此,MixIn就是一种常见的设计。

只允许单一继承的语言(如Java)不能使用MixIn的设计。

Python内置@property装饰器实现方法转属性

[TOC]

在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:

1
2
s = Student()
s.score = 9999

这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:

1
2
3
4
5
6
7
8
9
10
11
class Student(object):

def get_score(self):
return self._score

def set_score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value

现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:

1
2
3
4
5
6
7
8
>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!

但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。

有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!

还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:

1
2
3
4
5
6
7
8
9
10
11
12
13
class Student(object):

@property
def score(self):
return self._score

@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value

@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

1
2
3
4
5
6
7
8
>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
...
ValueError: score must between 0 ~ 100!

注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:

1
2
3
4
5
6
7
8
9
10
11
12
13
class Student(object):

@property
def birth(self):
return self._birth

@birth.setter
def birth(self, value):
self._birth = value

@property
def age(self):
return 2015 - self._birth

上面的birth是可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。

小结

@property广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性。

try it ?

请利用@property给一个Screen对象加上widthheight属性,以及一个只读属性resolution

1
2
3
4
5
6
7
8
9
10
11
12
# -*- coding: utf-8 -*-
class Screen(object):
@property
def width(self):
return self._width
@width.setter
def width(self, value):
self._width = value
@property
def width(self):
return self._width
pass

测试:

1
2
3
4
5
6
7
8
9
# 测试:
s = Screen()
s.width = 1024
s.height = 768
print('resolution =', s.resolution)
if s.resolution == 786432:
print('测试通过!')
else:
print('测试失败!')

answer:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Screen(object):

@property
def height(self):
return self._height
@height.setter
def height(self, value):
self._height = value

@property
def width(self):
return self._width
@width.setter
def width(self, value):
self._width = value

@property
def resolution(self):
return self._width * self._height

Python变量__slots__属性限制

[TOC]

正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。先定义class:

1
2
class Student(object):
pass

然后,尝试给实例绑定一个属性:

1
2
3
4
>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print(s.name)
Michael

还可以尝试给实例绑定一个方法:

1
2
3
4
5
6
7
8
>>> def set_age(self, age): # 定义一个函数作为实例方法
... self.age = age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25

但是,给一个实例绑定的方法,对另一个实例是不起作用的:

1
2
3
4
5
>>> s2 = Student() # 创建新的实例
>>> s2.set_age(25) # 尝试调用方法
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'set_age'

为了给所有实例都绑定方法,可以给class绑定方法:

1
2
3
4
>>> def set_score(self, score):
... self.score = score
...
>>> Student.set_score = set_score

给class绑定方法后,所有实例均可调用:

1
2
3
4
5
6
>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99

通常情况下,上面的set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。

使用__slots__

但是,如果我们想要限制实例的属性怎么办?比如,只允许对Student实例添加nameage属性。

为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:

1
2
class Student(object):
__slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称

然后,我们试试:

1
2
3
4
5
6
7
>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。

使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:

1
2
3
4
5
>>> class GraduateStudent(Student):
... pass
...
>>> g = GraduateStudent()
>>> g.score = 9999

除非在子类中也定义__slots__,这样,子类实例允许定义的属性就是自身的__slots__加上父类的__slots__

Python实例属性和类属性

[TOC]

由于Python是动态语言,根据类创建的实例可以任意绑定属性。

给实例绑定属性的方法是通过实例变量,或者通过self变量:

1
2
3
4
5
6
class Student(object):
def __init__(self, name):
self.name = name

s = Student('Bob')
s.score = 90

但是,如果Student类本身需要绑定一个属性呢?可以直接在class中定义属性,这种属性是类属性,归Student类所有:

1
2
class Student(object):
name = 'Student'

当我们定义了一个类属性后,这个属性虽然归类所有,但类的所有实例都可以访问到。来测试一下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> class Student(object):
... name = 'Student'
...
>>> s = Student() # 创建实例s
>>> print(s.name) # 打印name属性,因为实例并没有name属性,所以会继续查找class的name属性
Student
>>> print(Student.name) # 打印类的name属性
Student
>>> s.name = 'Michael' # 给实例绑定name属性
>>> print(s.name) # 由于实例属性优先级比类属性高,因此,它会屏蔽掉类的name属性
Michael
>>> print(Student.name) # 但是类属性并未消失,用Student.name仍然可以访问
Student
>>> del s.name # 如果删除实例的name属性
>>> print(s.name) # 再次调用s.name,由于实例的name属性没有找到,类的name属性就显示出来了
Student

从上面的例子可以看出,在编写程序的时候,千万不要对实例属性和类属性使用相同的名字,因为相同名称的实例属性将屏蔽掉类属性,但是当你删除实例属性后,再使用相同的名称,访问到的将是类属性。

try it ?

为了统计学生人数,可以给Student类增加一个类属性,每创建一个实例,该属性自动增加:

1
2
3
4
5
6
# -*- coding: utf-8 -*-
class Student(object):
count = 0

def __init__(self, name):
self.name = name

测试:

1
2
3
4
5
6
7
8
9
10
11
12
13
if Student.count != 0:
print('测试失败!')
else:
bart = Student('Bart')
if Student.count != 1:
print('测试失败!')
else:
lisa = Student('Bart')
if Student.count != 2:
print('测试失败!')
else:
print('Students:', Student.count)
print('测试通过!')

answer:

1
2
3
4
5
class Student(object):
count = 0
def __init__(self, name):
self.name = name
Student.count = Student.count + 1

Python

[TOC]

路径和名字的获取方式

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import os,sys

if __name__ == '__main__':
filename = __file__
print("filename : ", filename)
filepath = os.path.abspath(filename)
print("filepath : ", filepath)
dirname = os.path.dirname(__file__)
print("dirname : ", dirname)
dirpath = os.path.abspath(dirname)
print("dirpath : ", dirpath)

输出:
filename : C:/Users/dell/Desktop/git/SimpleStorageServer-Windows10/test.py
filepath : C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\test.py
dirname : C:/Users/dell/Desktop/git/SimpleStorageServer-Windows10
dirpath : C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10

os.walk的用法

os.walk(directorypath, topdown=True, onerror=None, followlinks=False)

这里directorypath 必须是一个目录的路径,如果是一个文件的路径,则不会得到任何东西

第一个为起始路径,第二个为起始路径下的文件夹,第三个是起始路径下的文件。
dirpath 是一个string,代表目录的路径,
dirnames 是一个list,包含了dirpath下所有子目录的名字。
filenames 是一个list,包含了非目录文件的名字。
这些名字不包含路径信息,如果需要得到全路径,需要使用os.path.join(dirpath, name).通过for循环自动完成递归枚举

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os,sys
if __name__ == '__main__':
filename = __file__
print("filename : ", filename)
filepath = os.path.abspath(filename)
print("filepath : ", filepath)
dirname = os.path.dirname(__file__)
print("dirname : ", dirname)
dirpath = os.path.abspath(dirname)
print("dirpath : ", dirpath)

# for dirpaths, dirnames, filenames in os.walk(filepath):
# print(dirpaths, dirnames, filenames)

# for dirpaths, dirnames, filenames in os.walk(dirpath, topdown=False):
for dirpaths, dirnames, filenames in os.walk(dirpath):
print(dirpaths, dirnames, filenames)
# print(dirpaths, filenames)
# for i in filenames:
# print(os.path.join(dirpaths,i))
# for j in dirnames:
# print(os.path.join(dirpaths, j))
# pass

输出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
filename :  C:/Users/dell/Desktop/git/SimpleStorageServer-Windows10/test.py
filepath : C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\test.py
dirname : C:/Users/dell/Desktop/git/SimpleStorageServer-Windows10
dirpath : C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10
C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10 ['.git', '.idea', 'config', 'test'] ['.gitignore', '.gitlab-ci.yml', 'README.md', 's3-aws.py', 's3-minio.py', 'test.py']
C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\.git ['hooks', 'info', 'logs', 'objects', 'refs'] ['config', 'description', 'FETCH_HEAD', 'HEAD', 'index', 'ORIG_HEAD', 'packed-refs']
C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\.git\hooks [] ['applypatch-msg.sample', 'commit-msg.sample', 'post-update.sample', 'pre-applypatch.sample', 'pre-commit.sample', 'pre-push.sample', 'pre-rebase.sample', 'pre-receive.sample', 'prepare-commit-msg.sample', 'update.sample']
C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\.git\info [] ['exclude']
C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\.git\logs ['refs'] ['HEAD']
C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\.git\logs\refs ['heads', 'remotes'] []
C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\.git\logs\refs\heads [] ['master']
C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\.git\logs\refs\remotes ['origin'] []
C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\.git\logs\refs\remotes\origin [] ['HEAD', 'master', 'release']
...

发现了吗,如果dirpath下面的是目录,则walk还会遍历dirpath下面的文件和目录
所以功能通过下面这段代码,可以实现,递归的显示目录或者文件

1
2
3
4
# for i in filenames:
# print(os.path.join(dirpaths,i))
# for j in dirnames:
# print(os.path.join(dirpaths, j))

与os.listdir() 的区别

listdir会显示目录下的文件和目录,没有递归,不区分文件和目录

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import os,sys

if __name__ == '__main__':
filename = __file__
print("filename : ", filename)
filepath = os.path.abspath(filename)
print("filepath : ", filepath)
dirname = os.path.dirname(__file__)
print("dirname : ", dirname)
dirpath = os.path.abspath(dirname)
print("dirpath : ", dirpath)

test = os.listdir()
print(test)

输出:

1
2
3
4
5
filename :  C:/Users/dell/Desktop/git/SimpleStorageServer-Windows10/test.py
filepath : C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10\test.py
dirname : C:/Users/dell/Desktop/git/SimpleStorageServer-Windows10
dirpath : C:\Users\dell\Desktop\git\SimpleStorageServer-Windows10
['.git', '.gitignore', '.gitlab-ci.yml', '.idea', 'config', 'README.md', 's3-aws.py', 's3-minio.py', 'test', 'test.py']

Python获取对象信息

[TOC]

当我们拿到一个对象的引用时,如何知道这个对象是什么类型、有哪些方法呢?

使用type()

首先,我们来判断对象类型,使用type()函数:

基本类型都可以用type()判断:

1
2
3
4
5
6
>>> type(123)
<class 'int'>
>>> type('str')
<class 'str'>
>>> type(None)
<type(None) 'NoneType'>

如果一个变量指向函数或者类,也可以用type()判断:

1
2
3
4
>>> type(abs)
<class 'builtin_function_or_method'>
>>> type(a)
<class '__main__.Animal'>

但是type()函数返回的是什么类型呢?它返回对应的Class类型。如果我们要在if语句中判断,就需要比较两个变量的type类型是否相同:

1
2
3
4
5
6
7
8
9
10
>>> type(123)==type(456)
True
>>> type(123)==int
True
>>> type('abc')==type('123')
True
>>> type('abc')==str
True
>>> type('abc')==type(123)
False

types

判断基本数据类型可以直接写intstr等,但如果要判断一个对象是否是函数怎么办?可以使用types模块中定义的常量:

1
2
3
4
5
6
7
8
9
10
11
12
>>> import types
>>> def fn():
... pass
...
>>> type(fn)==types.FunctionType
True
>>> type(abs)==types.BuiltinFunctionType
True
>>> type(lambda x: x)==types.LambdaType
True
>>> type((x for x in range(10)))==types.GeneratorType
True

使用isinstance()

对于class的继承关系来说,使用type()就很不方便。我们要判断class的类型,可以使用isinstance()函数。

我们回顾上次的例子,如果继承关系是:

1
object -> Animal -> Dog -> Husky

那么,isinstance()就可以告诉我们,一个对象是否是某种类型。先创建3种类型的对象:

1
2
3
>>> a = Animal()
>>> d = Dog()
>>> h = Husky()

然后,判断:

1
2
>>> isinstance(h, Husky)
True

没有问题,因为h变量指向的就是Husky对象。

再判断:

1
2
>>> isinstance(h, Dog)
True

h虽然自身是Husky类型,但由于Husky是从Dog继承下来的,所以,h也还是Dog类型。换句话说,isinstance()判断的是一个对象是否是该类型本身,或者位于该类型的父继承链上。

因此,我们可以确信,h还是Animal类型:

1
2
>>> isinstance(h, Animal)
True

同理,实际类型是Dog的d也是Animal类型:

1
2
>>> isinstance(d, Dog) and isinstance(d, Animal)
True

但是,d不是Husky类型:

1
2
>>> isinstance(d, Husky)
False

能用type()判断的基本类型也可以用isinstance()判断:

1
2
3
4
5
6
>>> isinstance('a', str)
True
>>> isinstance(123, int)
True
>>> isinstance(b'a', bytes)
True

并且还可以判断一个变量是否是某些类型中的一种,比如下面的代码就可以判断是否是list或者tuple:

1
2
3
4
>>> isinstance([1, 2, 3], (list, tuple))
True
>>> isinstance((1, 2, 3), (list, tuple))
True

总是优先使用isinstance()判断类型,可以将指定类型及其子类“一网打尽”。

使用dir()

如果要获得一个对象的所有属性和方法,可以使用dir()函数,它返回一个包含字符串的list,比如,获得一个str对象的所有属性和方法:

1
2
3
>>> dir('ABC')
['__add__', '__class__',..., '__subclasshook__', 'capitalize', 'casefold',..., 'zfill']

类似__xxx__的属性和方法在Python中都是有特殊用途的,比如__len__方法返回长度。在Python中,如果你调用len()函数试图获取一个对象的长度,实际上,在len()函数内部,它自动去调用该对象的__len__()方法,所以,下面的代码是等价的:

1
2
3
4
>>> len('ABC')
3
>>> 'ABC'.__len__()
3

我们自己写的类,如果也想用len(myObj)的话,就自己写一个__len__()方法:

1
2
3
4
5
6
7
>>> class MyDog(object):
... def __len__(self):
... return 100
...
>>> dog = MyDog()
>>> len(dog)
100

剩下的都是普通属性或方法,比如lower()返回小写的字符串:

1
2
>>> 'ABC'.lower()
'abc'

仅仅把属性和方法列出来是不够的,配合getattr()setattr()以及hasattr(),我们可以直接操作一个对象的状态:

1
2
3
4
5
6
7
>>> class MyObject(object):
... def __init__(self):
... self.x = 9
... def power(self):
... return self.x * self.x
...
>>> obj = MyObject()

紧接着,可以测试该对象的属性:

1
2
3
4
5
6
7
8
9
10
11
12
13
>>> hasattr(obj, 'x') # 有属性'x'吗?
True
>>> obj.x
9
>>> hasattr(obj, 'y') # 有属性'y'吗?
False
>>> setattr(obj, 'y', 19) # 设置一个属性'y'
>>> hasattr(obj, 'y') # 有属性'y'吗?
True
>>> getattr(obj, 'y') # 获取属性'y'
19
>>> obj.y # 获取属性'y'
19

如果试图获取不存在的属性,会抛出AttributeError的错误:

1
2
3
4
>>> getattr(obj, 'z') # 获取属性'z'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'MyObject' object has no attribute 'z'

可以传入一个default参数,如果属性不存在,就返回默认值:

1
2
>>> getattr(obj, 'z', 404) # 获取属性'z',如果不存在,返回默认值404
404

也可以获得对象的方法:

1
2
3
4
5
6
7
8
9
>>> hasattr(obj, 'power') # 有属性'power'吗?
True
>>> getattr(obj, 'power') # 获取属性'power'
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn = getattr(obj, 'power') # 获取属性'power'并赋值到变量fn
>>> fn # fn指向obj.power
<bound method MyObject.power of <__main__.MyObject object at 0x10077a6a0>>
>>> fn() # 调用fn()与调用obj.power()是一样的
81

小结

通过内置的一系列函数,我们可以对任意一个Python对象进行剖析,拿到其内部的数据。要注意的是,只有在不知道对象信息的时候,我们才会去获取对象信息。如果可以直接写:

1
sum = obj.x + obj.y

就不要写:

1
sum = getattr(obj, 'x') + getattr(obj, 'y')

一个正确的用法的例子如下:

1
2
3
4
def readImage(fp):
if hasattr(fp, 'read'):
return readData(fp)
return None

假设我们希望从文件流fp中读取图像,我们首先要判断该fp对象是否存在read方法,如果存在,则该对象是一个流,如果不存在,则无法读取。hasattr()就派上了用场。

请注意,在Python这类动态语言中,根据鸭子类型,有read()方法,不代表该fp对象就是一个文件流,它也可能是网络流,也可能是内存中的一个字节流,但只要read()方法返回的是有效的图像数据,就不影响读取图像的功能。

Python类的继承和多态

[TOC]

继承

在OOP程序设计中,当我们定义一个class的时候,可以从某个现有的class继承,新的class称为子类(Subclass),而被继承的class称为基类、父类或超类(Base class、Super class)。

比如,我们已经编写了一个名为Animal的class,有一个run()方法可以直接打印:

1
2
3
4
class Animal(object):
def run(self):
print('Animal is running...')

当我们需要编写DogCat类时,就可以直接从Animal类继承:

1
2
3
4
5
class Dog(Animal):
pass

class Cat(Animal):
pass

对于Dog来说,Animal就是它的父类,对于Animal来说,Dog就是它的子类。CatDog类似。

继承有什么好处?最大的好处是子类获得了父类的全部功能。由于Animial实现了run()方法,因此,DogCat作为它的子类,什么事也没干,就自动拥有了run()方法:

1
2
3
4
5
dog = Dog()
dog.run()

cat = Cat()
cat.run()

运行结果如下:

1
2
Animal is running...
Animal is running...

当然,也可以对子类增加一些方法,比如Dog类:

1
2
3
4
5
6
7
class Dog(Animal):

def run(self):
print('Dog is running...')

def eat(self):
print('Eating meat...')

多态

继承的第二个好处需要我们对代码做一点改进。你看到了,无论是Dog还是Cat,它们run()的时候,显示的都是Animal is running...,符合逻辑的做法是分别显示Dog is running...Cat is running...,因此,对DogCat类改进如下:

1
2
3
4
5
6
7
8
9
class Dog(Animal):

def run(self):
print('Dog is running...')

class Cat(Animal):

def run(self):
print('Cat is running...')

再次运行,结果如下:

1
2
Dog is running...
Cat is running...

当子类和父类都存在相同的run()方法时,我们说,子类的run()覆盖了父类的run(),在代码运行的时候,总是会调用子类的run()。这样,我们就获得了继承的另一个好处:多态。

要理解什么是多态,我们首先要对数据类型再作一点说明。当我们定义一个class的时候,我们实际上就定义了一种数据类型。我们定义的数据类型和Python自带的数据类型,比如str、list、dict没什么两样:

1
2
3
a = list() # a是list类型
b = Animal() # b是Animal类型
c = Dog() # c是Dog类型

判断一个变量是否是某个类型可以用isinstance()判断:

1
2
3
4
5
6
>>> isinstance(a, list)
True
>>> isinstance(b, Animal)
True
>>> isinstance(c, Dog)
True

看来abc确实对应着listAnimalDog这3种类型。

但是等等,试试:

1
2
>>> isinstance(c, Animal)
True

看来c不仅仅是Dogc还是Animal

不过仔细想想,这是有道理的,因为Dog是从Animal继承下来的,当我们创建了一个Dog的实例c时,我们认为c的数据类型是Dog没错,但c同时也是Animal也没错,Dog本来就是Animal的一种!

所以,在继承关系中,如果一个实例的数据类型是某个子类,那它的数据类型也可以被看做是父类。但是,反过来就不行:

1
2
3
>>> b = Animal()
>>> isinstance(b, Dog)
False

Dog可以看成Animal,但Animal不可以看成Dog

要理解多态的好处,我们还需要再编写一个函数,这个函数接受一个Animal类型的变量:

1
2
3
def run_twice(animal):
animal.run()
animal.run()

当我们传入Animal的实例时,run_twice()就打印出:

1
2
3
>>> run_twice(Animal())
Animal is running...
Animal is running...

当我们传入Dog的实例时,run_twice()就打印出:

1
2
3
>>> run_twice(Dog())
Dog is running...
Dog is running...

当我们传入Cat的实例时,run_twice()就打印出:

1
2
3
>>> run_twice(Cat())
Cat is running...
Cat is running...

看上去没啥意思,但是仔细想想,现在,如果我们再定义一个Tortoise类型,也从Animal派生:

1
2
3
class Tortoise(Animal):
def run(self):
print('Tortoise is running slowly...')

当我们调用run_twice()时,传入Tortoise的实例:

1
2
3
>>> run_twice(Tortoise())
Tortoise is running slowly...
Tortoise is running slowly...

你会发现,新增一个Animal的子类,不必对run_twice()做任何修改,实际上,任何依赖Animal作为参数的函数或者方法都可以不加修改地正常运行,原因就在于多态。

多态的好处就是,当我们需要传入DogCatTortoise……时,我们只需要接收Animal类型就可以了,因为DogCatTortoise……都是Animal类型,然后,按照Animal类型进行操作即可。由于Animal类型有run()方法,因此,传入的任意类型,只要是Animal类或者子类,就会自动调用实际类型的run()方法,这就是多态的意思:

对于一个变量,我们只需要知道它是Animal类型,无需确切地知道它的子类型,就可以放心地调用run()方法,而具体调用的run()方法是作用在AnimalDogCat还是Tortoise对象上,由运行时该对象的确切类型决定,这就是多态真正的威力:调用方只管调用,不管细节,而当我们新增一种Animal的子类时,只要确保run()方法编写正确,不用管原来的代码是如何调用的。这就是著名的“开闭”原则:

对扩展开放:允许新增Animal子类;

对修改封闭:不需要修改依赖Animal类型的run_twice()等函数。

继承还可以一级一级地继承下来,就好比从爷爷到爸爸、再到儿子这样的关系。而任何类,最终都可以追溯到根类object,这些继承关系看上去就像一颗倒着的树。比如如下的继承树:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
                ┌───────────────┐
│ object │
└───────────────┘

┌────────────┴────────────┐
│ │
▼ ▼
┌─────────────┐ ┌─────────────┐
│ Animal │ │ Plant │
└─────────────┘ └─────────────┘
│ │
┌─────┴──────┐ ┌─────┴──────┐
│ │ │ │
▼ ▼ ▼ ▼
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ Dog │ │ Cat │ │ Tree │ │ Flower │
└─────────┘ └─────────┘ └─────────┘ └─────────┘

静态语言 vs 动态语言

对于静态语言(例如Java)来说,如果需要传入Animal类型,则传入的对象必须是Animal类型或者它的子类,否则,将无法调用run()方法。

对于Python这样的动态语言来说,则不一定需要传入Animal类型。我们只需要保证传入的对象有一个run()方法就可以了:

1
2
3
class Timer(object):
def run(self):
print('Start...')

这就是动态语言的“鸭子类型”,它并不要求严格的继承体系,一个对象只要“看起来像鸭子,走起路来像鸭子”,那它就可以被看做是鸭子。

Python的“file-like object“就是一种鸭子类型。对真正的文件对象,它有一个read()方法,返回其内容。但是,许多对象,只要有read()方法,都被视为“file-like object“。许多函数接收的参数就是“file-like object“,你不一定要传入真正的文件对象,完全可以传入任何实现了read()方法的对象。

小结

继承可以把父类的所有功能都直接拿过来,这样就不必重零做起,子类只需要新增自己特有的方法,也可以把父类不适合的方法覆盖重写。

动态语言的鸭子类型特点决定了继承不像静态语言那样是必须的。

Python类的访问限制

[TOC]

在Class内部,可以有属性和方法,而外部代码可以通过直接调用实例变量的方法来操作数据,这样,就隐藏了内部的复杂逻辑。

但是,从前面Student类的定义来看,外部代码还是可以自由地修改一个实例的namescore属性:

1
2
3
4
5
6
7
>>> bart = Student('Bart Simpson', 59)
>>> bart.score
59
>>> bart.score = 99
>>> bart.score
99

如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问,所以,我们把Student类改一改:

1
2
3
4
5
6
7
8
9
class Student(object):

def __init__(self, name, score):
self.__name = name
self.__score = score

def print_score(self):
print('%s: %s' % (self.__name, self.__score))

改完后,对于外部代码来说,没什么变动,但是已经无法从外部访问实例变量.__name实例变量.__score了:

1
2
3
4
5
6
>>> bart = Student('Bart Simpson', 59)
>>> bart.__name
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute '__name'

这样就确保了外部代码不能随意修改对象内部的状态,这样通过访问限制的保护,代码更加健壮。

但是如果外部代码要获取name和score怎么办?可以给Student类增加get_nameget_score这样的方法:

1
2
3
4
5
6
7
8
9
class Student(object):
...

def get_name(self):
return self.__name

def get_score(self):
return self.__score

如果又要允许外部代码修改score怎么办?可以再给Student类增加set_score方法:

1
2
3
4
5
6
class Student(object):
...

def set_score(self, score):
self.__score = score

你也许会问,原先那种直接通过bart.score = 99也可以修改啊,为什么要定义一个方法大费周折?因为在方法中,可以对参数做检查,避免传入无效的参数:

1
2
3
4
5
6
7
8
9
class Student(object):
...

def set_score(self, score):
if 0 <= score <= 100:
self.__score = score
else:
raise ValueError('bad score')

需要注意的是,在Python中,变量名类似__xxx__的,也就是以双下划线开头,并且以双下划线结尾的,是特殊变量,特殊变量是可以直接访问的,不是private变量,所以,不能用__name____score__这样的变量名。

有些时候,你会看到以一个下划线开头的实例变量名,比如_name,这样的实例变量外部是可以访问的,但是,按照约定俗成的规定,当你看到这样的变量时,意思就是,“虽然我可以被访问,但是,请把我视为私有变量,不要随意访问”。

双下划线开头的实例变量是不是一定不能从外部访问呢?其实也不是。不能直接访问__name是因为Python解释器对外把__name变量改成了_Student__name,所以,仍然可以通过_Student__name来访问__name变量:

1
2
3
>>> bart._Student__name
'Bart Simpson'

但是强烈建议你不要这么干,因为不同版本的Python解释器可能会把__name改成不同的变量名。

总的来说就是,Python本身没有任何机制阻止你干坏事,一切全靠自觉。

最后注意下面的这种错误写法

1
2
3
4
5
6
>>> bart = Student('Bart Simpson', 59)
>>> bart.get_name()
'Bart Simpson'
>>> bart.__name = 'New Name' # 设置__name变量!
>>> bart.__name
'New Name'

表面上看,外部代码“成功”地设置了__name变量,但实际上这个__name变量和class内部的__name变量不是一个变量!内部的__name变量已经被Python解释器自动改成了_Student__name,而外部代码给bart新增了一个__name变量。不信试试:

1
2
>>> bart.get_name() # get_name()内部返回self.__name
'Bart Simpson'

try it ?

请把下面的Student对象的gender字段对外隐藏起来,用get_gender()set_gender()代替,并检查参数有效性:

1
2
3
4
5
# -*- coding: utf-8 -*-
class Student(object):
def __init__(self, name, gender):
self.name = name
self.gender = gender

测试:

1
2
3
4
5
6
7
8
9
bart = Student('Bart', 'male')
if bart.get_gender() != 'male':
print('测试失败!')
else:
bart.set_gender('female')
if bart.get_gender() != 'female':
print('测试失败!')
else:
print('测试成功!')

answer:

1
2
3
4
5
6
7
8
9
10
11
class Student(object):
def __init__(self, name, gender):
self.__name = name
self.__gender = gender
def get_gender(self):
return self.__gender
def set_gender(self, sex):
if sex == 'male' or sex == 'female':
self.__gender = sex
else:
raise ValueError('you should give male or female')

Python面向对象初印象

[TOC]

面向对象编程——Object Oriented Programming,简称OOP,是一种程序设计思想。OOP把对象作为程序的基本单元,一个对象包含了数据和操作数据的函数。

面向过程的程序设计把计算机程序视为一系列的命令集合,即一组函数的顺序执行。为了简化程序设计,面向过程把函数继续切分为子函数,即把大块函数通过切割成小块函数来降低系统的复杂度。

而面向对象的程序设计把计算机程序视为一组对象的集合,而每个对象都可以接收其他对象发过来的消息,并处理这些消息,计算机程序的执行就是一系列消息在各个对象之间传递。

在Python中,所有数据类型都可以视为对象,当然也可以自定义对象。自定义的对象数据类型就是面向对象中的类(Class)的概念。

我们以一个例子来说明面向过程和面向对象在程序流程上的不同之处。

假设我们要处理学生的成绩表,为了表示一个学生的成绩,面向过程的程序可以用一个dict表示:

1
2
std1 = { 'name': 'Michael', 'score': 98 }
std2 = { 'name': 'Bob', 'score': 81 }

而处理学生成绩可以通过函数实现,比如打印学生的成绩:

1
2
def print_score(std):
print('%s: %s' % (std['name'], std['score']))

如果采用面向对象的程序设计思想,我们首选思考的不是程序的执行流程,而是Student这种数据类型应该被视为一个对象,这个对象拥有namescore这两个属性(Property)。如果要打印一个学生的成绩,首先必须创建出这个学生对应的对象,然后,给对象发一个print_score消息,让对象自己把自己的数据打印出来。

1
2
3
4
5
6
7
8
class Student(object):

def __init__(self, name, score):
self.name = name
self.score = score

def print_score(self):
print('%s: %s' % (self.name, self.score))

给对象发消息实际上就是调用对象对应的关联函数,我们称之为对象的方法(Method)。面向对象的程序写出来就像这样:

1
2
3
4
bart = Student('Bart Simpson', 59)
lisa = Student('Lisa Simpson', 87)
bart.print_score()
lisa.print_score()

面向对象的设计思想是从自然界中来的,因为在自然界中,类(Class)和实例(Instance)的概念是很自然的。Class是一种抽象概念,比如我们定义的Class——Student,是指学生这个概念,而实例(Instance)则是一个个具体的Student,比如,Bart Simpson和Lisa Simpson是两个具体的Student。

所以,面向对象的设计思想是抽象出Class,根据Class创建Instance。

面向对象的抽象程度又比函数要高,因为一个Class既包含数据,又包含操作数据的方法。

小结

数据封装、继承和多态是面向对象的三大特点,我们后面会详细讲解。